PRODUCCIÓN DE BIOGÁS: Fundamentos y parámetros

Autores/as

Liliana Pampillón González
https://orcid.org/0000-0003-0216-700X
Luis Fernando Cisneros Morales

Palabras clave:

Biodigestión, Biogás, Biomasa, Fuentes renovables de energía, Gases de efecto invernadero, Biodigestion, Biogas, Biomass, Renewable energy sources, Greenhouse gases

Sinopsis

Este libro es una guía para el estudiante, resultado de las experiencias recogidas a lo largo de la trayectoria de los autores. Por una parte, posee un gran componente de base científica y académica; por la otra, se complementa con elementos prácticos de las lecciones aprendidas por los diversos proyectos desarrollados para el sector agropecuario en el componente de bioenergía por agencias gubernamentales.

El tema es relevante dada la problemática mundial del manejo, el tratamiento y la disposición final inadecuada de los residuos orgánicos, aunado a la caída en las reservas de petróleo y el aumento de las emisiones de gases de efecto invernadero. El uso de fuentes alternas de energía, como lo son los sistemas de producción de biogás, se convierte en una estrategia oportuna, dada la necesidad desde el punto de vista social, ambiental, energético y económico en la gestión de los residuos y la generación de energía alternativa.

Bajo esta premisa, el lector tiene en sus manos un documento-guía sobre el diseño, la instalación y el seguimiento de los sistemas de producción de biogás (comúnmente llamados biodigestores) a través de un recorrido general por los fundamentos y los requerimientos técnicos necesarios para su desarrollo e implementación.

 

Biogas Production: Fundamentals and Parameters

This student handbook is the result of the experiences collected throughout the authors’ trajectory. On one hand, it has a broad scientific and academic component; on the other, it is complemented by practical elements of the lessons learned through the many projects developed for the agricultural sector in the bioenergy component by government agencies.

The topic is relevant given the global problems on management, treatment and inadequate final disposal of organic waste, coupled with the fall in oil reserves and the increase in greenhouse gas emissions. The use of alternative energy sources, such as biogas production systems, becomes a timely strategy, given the need from a social, environmental, energetic and economic point of view in waste management and alternative energy generation.

After such premise, the reader has a guide on design, installation and monitoring of biogas production systems (commonly called biodigesters), through a general tour on the fundamentals and the technical requirements for development and implementation.

Biografía del autor/a

Liliana Pampillón González

Profesora Investigadora de la División Académica de Ciencias Biológicas de la UJAT. Es ingeniera Ambiental, maestra en Ciencias con especialidad en Fisicoquímica y doctora en Ciencias con especialidad en Desarrollo Científico y Tecnológico. Sus líneas de investigación son el aprovechamiento sustentable de los recursos bioenergéticos, estudios atmosféricos y tratamiento de agua.

Es miembro de la Organización para Mujeres en la Ciencia para países en Desarrollo y del Sistema Estatal de Investigadores. Es secretaria del Comité de Eficiencia Energética de la UJAT y secretaria de Energía, Recursos Naturales y Protección Ambiental del Estado de Tabasco (SERNAPAM). También es miembro del Padrón Nacional de Evaluadores como “Experto Técnico” de la Entidad Mexicana de Acreditación (EMA) en el área de organismos de certificación y proveedores de tecnologías de energía renovables.

She is research professor of the Academic Division of Biological Sciences of the UJAT. She is an Environmental Engineer, master of science in Physical Chemistry and doctor of science in Scientific and Technological Development. Her research lines are the sustainable use of bioenergy resources, atmospheric studies and water treatment.

She is member of the Organization for Women in Science for Developing Countries end of the State System of Researchers. She is secretary of the Energy Efficiency Committee of the UJAT and Secretary of Energía, Recursos Naturales y Protección Ambiental of the State of Tabasco (SERNAPAM). Additionally, she is member of the National Registry of Evaluators as a “Technical Expert” of the Entidad Mexicana de Acreditación (EMA) in the area of certification organizations and suppliers of renewable energy technologies.

Luis Fernando Cisneros Morales

Actualmente es consultor e integra el equipo de implementación técnica de la Secretaría de Energía (SENER), dentro del proyecto “Desarrollo de Tecnologías de Energía Sustentable”, ejecutado en conjunto con el Banco Mundial. El objetivo de este proyecto es buscar apoyar la comercialización de tecnologías innovadoras en energía limpia a nivel nacional.

Es ingeniero ambiental egresado del Instituto Politécnico Nacional. Se ha desempeñado en diversos cargos dentro del sector gubernamental. Colaboró en el desarrollo de las especificaciones técnicas para la construcción de biodigestores en el sector agropecuario y ha participado en la capacitación técnico-académica dirigida a productores y especialistas en el ámbito de las tecnologías energéticas.

He is currently a consultant and is part of the technical implementation team of the Secretaría de Energía (SENER), within the project “Development of Sustainable Energy Technologies”, executed in tandem with the World Bank. The objective of this project is to support the commercialization of innovative clean energy technologies at a national level.

He is an Environmental Engineer graduated from the Instituto Politécnico Nacional. He has held many positions within the government sector. He collaborated in developing technical guidelines for the construction of biodigesters in the agricultural sector and has participated in the technical-academic training aimed at producers and specialists in the field of energy technologies.

Gaspar López Ocaña

Es ingeniero Ambiental, maestro en Ingeniería y Protección Ambiental, con especialidad en Sistemas de Tratamiento de Aguas y Aguas Residuales, y doctor en ciencias en Ecología y Manejo de Sistemas Tropicales por la Universidad Juárez Autónoma de Tabasco. Ha incursionado en líneas de investigación y proyectos sobre contaminación de suelo, modelación ambiental, restauración de suelos impactados por hidrocarburos, evaluación de impactos, riesgos y daños ambientales, restauración ecológica, monitoreo de calidad del aire, calidad del agua en sistemas lóticos y lénticos, diseño de sistemas de tratamientos de aguas residuales, entre otros temas.

Brinda servicios profesionales en industrias, empresas y sector gubernamental, orientados hacia el tratamiento de aguas residuales, potabilización, impacto ambiental y gestión de RSU. Actualmente es profesor investigador de la División de Ciencias Biológicas de la UJAT, desarrollando su línea de generación y aplicación de conocimientos en Tecnología del Agua. También es responsable del Laboratorio de Tecnología del Agua. Pertenece al Sistema Nacional de Investigadores.

He is an Environmental Engineer, master in Engineering and Environmental Protection, with specialization in Water and Wastewater Treatment Systems, and doctor of science in Ecology and Management of Tropical Systems from the Universidad Juárez Autónoma de Tabasco. He has been engaged in research and developing projects on soil pollution, environmental modeling, restoration of soils impacted by hydrocarbons, assessment of impacts, risks and environmental damage, ecological restoration, air quality monitoring, water quality in lotic and lentic systems, design of wastewater treatment systems, among other topics.

He provides professional services in industries, companies and the government sector, oriented towards wastewater treatment, purification, environmental impact and MSW management. He is currently a Research Professor at the Division of Biological Sciences of the UJAT, developing his line of generation and application of knowledge in Water Technology. He is also responsible for the Water Technology Laboratory. He is member of the National System of Researchers Level 1, in addition, he is a project evaluator and international referee in indexed journals.

Citas

Abbasi S.A., Tauseef S.M., Abbasi T. (2012). Anaerobic digestion for global warming control and energy generation: An overview. Renewable and Sustainable Energy Reviews. Volume 16. pp-2338-2342.

Al Seadi T (2001) Good practice in quality management of AD residues from biogas production, Report made for the International Energy Agency, Task 24—energy from biological conversion of organic waste, published by IEA Bioenergy and AEA Technology Environment, Oxfordshire, UK

Amigun B., von Blottnitz H. 2010. Capacity-cost analyses for biogas plant in Africa. Resources-cost and location-cost analyses for biogas plants in Africa. Resources, Conservation and Recycling (55) 63-73.

ANEAS (2017). Guía técnica para el manejo y aprovechamiento de biogás en plantas de tratamiento de aguas residuales. Programa Aprovechamiento Energético de Residuos Urbanos en México. GIZ México, SENER, SEMARNAT, CONAGUA, BMZ. http://aneas.com.mx/wp-content/uploads/2017/10/guia-lodos2017-dig.pdf

Arthur R., 2011. Biogas as a potential renewable energy source: A Ghanaian case study. Renewable Energy (36) 1510-1516.

Banks CJ, Salter AM, Chesshire M (2007) Potential of anaerobic digestion for mitigation of greenhouse gas emissions and productions of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe. Water Sci Technol 55 (10): 2165-173.

Bertalanffy, Ludwig von. (1981). A system view of man. Ed. Paul A. La Violette. Boulder, CO: Westview, 1981.

Boyle G. (2004). Renewable Energy. Second edition. Nueva York: Oxford University Press. Broughton AD (2009) Hydrolysis and acidogenesis of farm dairy

effluent for biogas production at ambient temperatures. M.S. thesis, Massey University, New Zealand.

Burton, C.H., 2007. The potential contribution of separation of technologies to the management of livestock manure. Livest. Sci. 112, 208-216.

Cantrell K.B., Ducey T., Ro K.S., Hunt G. 2008. Livestock waste to bioenergy generation opportunities. Bioresource technology 99, 7941-7953.

Castro Claudia, Valverde María, Paredes Octavio. Biocombustibles: biomasa lignocelulósica y procesos de producción. Ide@as concyteg. Año 4 núm 54, 2 de diciembre de 2009. Pág. 1246-1270.

Chen Y, Cheng J.J. Creamer K. S. 2008. Inhibition of anaerobic digestion process: A review. Bioresource Technology 99, 4044-4064.

De Man A., Last A., Lettinga G. (1988). The use of EGSI and UASB anaerobic systems for low strength soluble and complex wastewaters at temperatures ranging from 8-30ºC. Anaerobic digestion (Adv. Water Pollut. Control no 5) E.R. Hall & P.N. Hobson. Pp. 197-210

Deublein D., Stein Hauser, A. (2008). Biogas from waste and renewable resources, and introduction. Wiley-VCH Publishing House, London, UK.

EPA (United States Environmental Protection Agency) (2006) Biosolids technology fact sheet:multi-stage anaerobic digestion. Retrieved 11 Oct 2013. URL: http://water.epa.gov/scitech/wastetech/upload/2006_10_16_mtb_multistage.pdf

Escalante S., Roberto y Fernando Rello (2000). El sector agropecuario mexicano: los desafíos del futuro”. Comercio Exterior, vol 50.

FAO. 2006. Livestock’s long shadow: Environmental issues and options. ISBN 978-92-5-105571-7. Rome, Italy. pp. 377

FAO. World Agriculture: towards 2015/2030. An FAO Perspective; 2003 <http://www.fao.org/docrep/005/y4252e/y4252e00.htm>[accessed on 10.03.14].

FIRA. 2010. Panorama Agroalimentario: Carne de Porcino 2012. Dirección General Adjunta de Inteligencia Sectorial. Fideicomisos instituidos en relación con la agricultura. pp.22

FIRCO. (2011). Especificaciones Técnicas para el diseño y construcción de biodigestores en México. Publicación gobierno federal. Oficinas centrales FIRCO

FIRCO. (2012). Diagnóstico general de los Sistema de biodigestión. Central Offices of Shared Trust Fund Risk. Secretary of Agriculture, Livestock, Rural Development, Fisheries and Food. Government

publications. México, D.F. 199 pp.

Furukawa, Y., Hasegawa, H., 2006. Response of spinach and komatsuna to biogas effluent made form source-separated kitchen garbage. J. Environ. Qual. 35, 1939-1947.

Guía de Implementación de sistemas de biodigestión en ecoempresas. (2012). Gobierno de Honduras. http://www.sn-vworld.org/es/countries/honduras/news/guia-implementacion-de- sistemas-de-biodigestion-en-ecoempresas

Hansen L. Conly, Cheong Daen Yeol. 2007. Agricultural waste management in food processing, Handbook of Farm, Dairy and Food Machinery. pp. 609-661.

Hill, J., Nelson, E. Tilman, D., Polasky, S. & Tiffany, D. 2006. “Environmental economic and energetic cost and benefits of biodiesel and etanol biofuels”. Proc. Natl Acad Sci, 103, 1206-11210.

Holm-Nielsen J.B., Seadi T. A., Oleskowicz-Popiel P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource Technology (100) 5478-5484.

Holm-Nielsen JB, Oleskowicz-Popiwebel P. The future of biogas in Europe: visions and targets until 2020.

Bioenergy department, University of Southern Denmark 2008; p. 8. International Energy Agency (IEA) 2006.Statistics. http://www.iea.org/stats/index.asp

Inventario nacional de emisiones de gases de efecto invernadero 1990-2006 (INEGEI) http://www2.ine.gob.mx/descargas/cclimati-co/inegei_res_ejecutivo.pdfIonel

I.,Cioabla A.E. 2010. Biogas production based on agricultural residues. From history to results and perspectives. Wseas Transactions on Environment and Development. Issue 8, Volume , 591-603.

Jørgensen, K., Jensen, L.S., 2009. Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies. Bioresour. Technol. 100, 3088-3096.

Kranert M., Kusch S., Huang J., Fischer K. Anaerobic digestion of waste. Green Energy and Technology. Waste to Energy: opportunities and challenges for developing and transition economies. 2012.

Lettinga G., Rebac S., Zeeman, G. (2001). Challengue of psychrophilic anaerobic wastewater treatment. Trends in biotechnology. (19) 363-370.

Liu, W., Yang, Q., Du, L., 2009. Soiles cultivation for high-quality vegetables with biogas manure in China: feasibility and benefit analysis. Renew. Agr. Food Syst. 24, 300-307.

Marañon E., Salter A.M. Castrillón L., Heaven S., Fernández- Nava. 2011. Reducing the environmental impact of methane emissions from dairy farms by anaerobicdigestion of cattle waste. Waste Management (31) 1745-1751.

Mariscal Landín, Gerardo. 2007. FAO. Tratamiento excretas de cerdos. www.fao.org/wairdocs/LEAD/X6372S/x6372s08.htm

Masera y Col. 2006. La Bioenergía en México, un catalizador para el desarrollo sustentable, México: Red Mexicana de Bioenergía-CONAFOR Editado por Mundi-empresa.

Massé D., Tabpt G., Gilbert Y. (2011). On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operation. Animal Feed Science and Technology, volume 166, 436-445.

Massi E. 2012. Anaerobic Digestion. Green Energy and Technology. Springer-Verlag London. DOI. 10.1007/978-1-4471-2369-9-3.

Mata-Alvarez J., Macé S., Llabrés P. 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource technology 74, 3-16.

Neumann K., Verburg P., Elbersen B., Sthefest E., Woltjer G. 2011. Multi-scale scenarios of spatial-temporal dynamics in the European livestock sector. Agriculture, Ecosystems and Environment (140) 88-101.

Ostrem K (2004) Greening waste: anaerobic digestion for treating the organic reaction of municipal solid wastes. M.S. thesis, Columbia University, New York, NY.

P. Bajpai. (2017). Chapter 2. Basics of anaerobic digestion process. In: Anaerobic Technology in Pulp and Paper Industry, Springer Briefs in Applied Sciences and Technology, DOI 10.1007/978-981-10-4130-3_2

Pampillón-González, L. (2014). Biodigestores en el sector agropecuario de México: aprovechamiento de los lodos. Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional (CINVESTAV). Tesis doctoral. México, D.F. pp. 137

Park, S.K., Jang, H.M., Ha, J.H., Park, J.M., 2014. Sequential sludge digestion after diverse pre-treatment conditions: Sludge removal, methane production and microbial community changes. Bioresource Technology. 162, 331-340.

Penz A. (2000). Efecto de la nutrición en la cantidad y en la calidad de los desechos de los cerdos. Duodécimo ciclo de conferencias sobre aminoácidos sintéticos. FERMEX. México. D.F. 22 septiembre pp. 1-23

Pérez, R. 1999. Porcicultura Intensiva y Medio ambiente en México. Revista mundial de Zootecnia. FAO corporate document repository, Instituto de Investigaciones Económicas. UNAM.

Poeschl, M., Ward S., Owende P. (2010). Prospect for expanded utilization of biogas in Germany. Renewable and Sustainable Energy Review. Volume 14. 1782-1797.

Pohland F., Malina J. (1992). Design of anaerobic processes for the treatment of industrial and municipal wastes. Lancaster, Technomic Pub. Co. Harvard (18a ed.)

Rios M., Kaltshcmitt M. 2013. Bioenergy potential in Mexico –status and perspectives on a high spatial distribution. Biomass Conv. Bioref. (3) 239-254.

Rocchietti S. (2005). El “trans” de Transdisciplina. Revisado en www.con-versiones.com/nota0191.html

SAGARPA-FIRCO (2007). Aprovechamiento de biogás para la generación de energía eléctrica en el sector agropecuario. Mayo 2007.

Sänger, D., Geisseler, B., Ludwig, B., 2011. Effect of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry. Biol. Fert. Soils 47, 249-259.

Scaglia B., D’Imporzano G., Garuti G., Negri M., Adani F. 2014. Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge. Science of total Environment. (466-467) 888-897.

SENER. 2006. Energía renovables para el desarrollo Sustentable de México. Secretaría de Energía. GTZ.

Servicio de información agroalimentaria y pesquera (2012). Recuperado de: http://www.campomexicano.gob.mx/portal_siap/integracion/EstadisticaBascia/Pecuario/PoblacionGanadera/ProductosEspecie/Porcino.pdf

Speece, R. (1983). Anaerobic biotechnology for industrial wastewater treatment. Env. Sci. Technol (17).

Tauro R., Serrano-Medrano M., Masera O. (2018). Solid biofuels in Mexico: a sustainable alternative to satisfy the increasing demand for heat and power. Clean Technologies and Environment Policy (7)1528-1539. DOI: 10.1007/s10098-018-1529-z

Taricksa J., Long D.A., Chen P. J., Hung Y., Zou S. Anaerobic digestion. Handbook of Environmental Engineering, Volume 8: Biological Treatment Processes. The Humana Press, Totowa, NJ. 2007.

Tchobanoglus G., Schorodoeder (1985). Water quality: Characteristics, modeling, modification. Addison-Wesley, Reading. M.A.

Van Haandel A, van der Lubbe J (2007) Handbook biological wastewater treatment. Retrieved 13 Oct. URL: http://www.wastewaterhandbook.com/documents/sludge_treatment/831_anaerobic_digestion_theory.pdf

Weber B, Torres Bernal M, Pampillón-González L. Producción de Biogás en México: Estado actual y perspectivas. Cuaderno temático No.5 2012. ISBN 978-607-96084-1-5.

Wereko-Brobby y Hagen, (1996). Biomass conversion and technology. Wiley. pp. 203

Xia, Y., Masse, D.I., McAllister, T.A., Kong, Y.H., Seviour, R., Beaulieu, C., 2014. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes. Bioresource Technology. 110, 111-119.

Yadvika, Santosh, Sreekrishnan T.R., Sangeeta K., Rana V. 2004. Enhancement of biogas production from solid substrates using different techniques-a review. Bioresource Technology (95) 1-10.

Zeeman G., Palenzuela A., R., Sanders W., Miron Y., Lettinga G. 1999. Anaerobic hydrolysis and acidification of lipids, proteins and carbohydrates under methanogenic and acidogenic conditions. In:

Mata-Alvarez, J. Tilche, A., Cecchi, F. (Eds) Proceeding of the Second International Symposium Anaerobic Digestion of Solid Wastes, Barcelona. Vol.2 Gráfiques 92,15-18 June. pp.21-24.

Publicado

October 23, 2019 — Actualizado el July 1, 2021

Detalles sobre esta monografía

ISBN-13 (15)

978-607-606-566-2